

Organometallic derived ZnO QDs for improved sollar cell performance

Recently it has been demonstrated that the introduction of Electron Transfer Layers (ETLs) consisting of organometallic-derived Zinc Oxide Quantum Dots (**OM ZnO QDs**) in perovskite solar cells (PSCs) leads to superior photovoltaic performance and enhanced stability in comparison to PSCs based on a standard sol-gel derived ZnO layer (**SG ZnO QDs**). The following table shows the results of said study corresponding to the morphology and electrical properties of ETLs, as well as to the performance and stability of analogous PSCs:

Morphology	OM ZnO QDs	SG ZnO QDs
roughness of the surface	smoother surface (RMS=14.84 nm)	rougher surface (RMS=20.86 nm)
surface defects	no defects, no organic and inorganic impurities	surface defects, residual acetate ligands, alkali metal contaminations
Electrical properties	OM ZnO QDs	SG ZnO QDs
Resistivity x 10^{-5}	4.12 Ω∙cm	9.28 Ω∙cm
Conductivity x 10 ³	24.27 (Ω∙cm) ⁻¹	10.77 (Ω∙cm) ⁻¹
Carrier density x 10^{21}	6.17 cm ⁻³	4.66 cm ⁻³
PSC performance	OM ZnO QDs	SG ZnO QDs
Open circuit voltage (V _{oc})	1.129 V	1.09 V
Short circuit current density (J _{sc})	22.93 mA•cm ⁻²	21.95 mA∙cm ⁻²
Fill factor (FF)	77.52%	74.34%

Power convertion efficiency (PCE)	20.05%	17.78%
PSC stability	OM ZnO QDs	SG ZnO QDs
Long-term stability		
after 500h of storage in ambient conditions (25°C, approx. humidity 25%)	95% of original PCE	75% of original PCE
Temperature stability		
after 250h of heating (85°C, RH=60%)	54% of original PCE	complete desintegration

The presented comparison indicates that the application of OM ZnO QDs in ETLs:

- Allows for the formation of the uniform surface morphology with a reduced amount of surface defects
- Allows for low temperature processing
- Improves extraction of electrons
- Improves the ZnO/perovskite interface stability along with the perovskite film quality
- Reduced interfacial charge recombination and enhanced VOC and FF
- Superior photovoltaic performance of the PSC
- Enhanced long-term and thermal stability

For more information about the study, please follow the links:

- <u>https://doi.org/10.1002/adfm.202205909</u>
- <u>Supporting information</u>