Zinc Oxide Quantum Dot INK DMSO – L

SKU: N/ACategory:

Zinc Oxide Quantum Dots-based ink (ZnO-DMSO ink) 

Patented nanocolloidal dispersion of ZnO QDs in easily removable solvent molecules. Free from any organic stabilizing molecules and salt impurities allowing to cast pure ZnO thin films featuring no agglomeration, high crystallinity, stability, excellent electrical contact, and a low-density defects of ZnO. Recommended for fabrication of low-temperature processed non-passivated ETL layers in state-of-the-art devices with improved performance and enhanced operational stability.
Monodispersed, narrow size distribution, solution-stable, bright yellow luminescence upon excitation with UV. 

  • Superior nanocrystal quality in comparison to sol-gel derived ZnO QDs
  • Superior nanocolloidal solution –  no agglomeration in time
  • Lack of bulky organic coating and organic stabilizing molecules – excellent electrical contact
  • No surface defects – improved charge separation and stability
  • High-purity ZnO Nanoparticles without any added process metal impurities

General properties

AppearanceTransparent nanocolloid
Excitation 330 nm ±  5 nm
Emission (max.) 530 nm ±  5 nm
FWHM 135 nm ±  5 nm
Core size2 –  10 nm
SolubilityColloidal solution in DMSO
Concentration5 mg/ml

Storage conditionsRoom temperature,
to be used in 3 months after opening

Additional information
ApplicationsPhotovoltaics (perovskites and organics), OLED, QLED
Sensors
Printed electronics
Catalyst
FunctionsElectron transfer
Electron injection
Hole blocking
Sensing material
Typical mean size ~5 nm
Methods of depositionSpin coating
Dip coating
Spray Coating
Ink jet
Post-deposition treatmentThermal heating at >150°C  to remove  DMSO
PurityStandard purity
Electronic purity upon request
Chemical compatibilityAll the absorbers and emitters including perovskites.

References:

  • Chavan, R. D., Wolska‐Pietkiewicz, M., Prochowicz, D., Jędrzejewska, M., Tavakoli, M. M., Yadav, P., Hong, C., Lewiński, J. (2022).
    Organic Ligand‐Free ZnO Quantum Dots for Efficient and Stable Perovskite Solar Cells.
    Advanced Functional Materials, 2205909. https://doi.org/10.1002/adfm.202205909
  • Prochowicz, D., Tavakoli, M. M., Wolska-Pietkiewicz, M., Jędrzejewska, M., Trivedi, S., Kumar, M., Zakeeruddin, M., Lewiński, J., Graetzel, M., Yadav, P. (2020).
    Suppressing recombination in perovskite solar cells via surface engineering of TiO2 ETL.

    Solar Energy, 197(December 2019), 50–57. https://doi.org/10.1016/j.solener.2019.12.070
  • Lee, D., Wolska-Pietkiewicz, M., Badoni, S., Grala, A., Lewiński, J., & De Paëpe, G. (2019).
    Disclosing Interfaces of ZnO Nanocrystals Using Dynamic Nuclear Polarization: Sol-Gel versus Organometallic Approach.
    Angewandte Chemie – International Edition, 58(48), 17163–17168. https://doi.org/10.1002/anie.201906726
  • Grala, A., Wolska-Pietkiewicz, M., Danowski, W., Wróbel, Z., Grzonka, J., & Lewiński, J. (2016).
    ‘Clickable’ ZnO nanocrystals: the superiority of a novel organometallic approach over the inorganic sol–gel procedure.
    Chem. Commun., 52(46), 7340–7343. https://doi.org/10.1039/C6CC01430E

PRODUCT INTENDED FOR RESEARCH AND DEVELOPMENT PURPOSES ONLY. NOT INTENDED FOR ANY ANIMAL OR HUMAN THERAPEUTIC OR DIAGNOSTIC USE.

250.00

Clear
Download specificationDownload MSDS